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Abstract
Healthcare resource allocation is an application that has been largely neglected by the
machine learning community. We utilize the Electronic Health Records (EHR) of 1.4
million Finnish citizens, aged 65 and above, to develop a sequential deep learning model to
predict utilization of healthcare services in the following year on individual level. Historical
longitudinal EHR records from previous years, consisting of diagnosis codes, procedures,
and patient demographics, are used sequentially as an input to a Recurrent Neural Networks
(RNN). We improve the standard RNN regression pipeline for EHR code sequences by adding
a Convolutional Embedding layer to address multiple codes recorded simultaneously, and
Multi-headed attention. This reduces the number of epochs to converge by approximately
38% while improving the accuracy. We achieve approximately 10% improvement in R2 score
compared with state-of-the-art count-based baselines. Finally, we demonstrate the model’s
robustness to changes in healthcare practices over time, by showing that it retains it’s ability
to predict well into future years without any data available at the time of prediction, which
is needed in practice to aid the allocation of healthcare resources.

1. Introduction

Electronic Health Records (EHR) have been used to solve a myriad of predictive problems
using deep learning (LeCun et al., 2015; Goodfellow et al., 2016; Shickel et al., 2017; Rajkomar
et al.), e.g., predicting the next diagnosis (Lipton et al., 2015; Choi et al., 2016b) and time
duration to the next visit (Choi et al., 2016a; Harutyunyan et al., 2019) and learning
interpretable patient representation for downstream tasks (Miotto et al., 2016; Zhang et al.,
2018a; Choi et al., 2016c), etc. These models can help identify high-risk patients or recommend
personalized treatments. An application domain that has received little attention in the
machine learning literature is resource allocation, whereby a sponsor (e.g. a government) pays
healthcare providers (or insurance plans as in the US) money based on individuals registered
as customers with the provider. For fair and efficient resource allocation the sponsor needs a
risk adjustment model, which can predict the next year’s healthcare cost for each individual,
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using data from previous years. In this work, we develop such a model, using the number of
physical visits to a General Practitioner (GP) as a proxy for the cost.

Risk adjustment models are used in many countries, e.g., the USA, the Netherlands and
Germany, to allocate healthcare resources (McGuire and van Kleef, 2018). Models used in
practice are based on simple regression, with inputs such as demographic variables (age,
gender), socio-economic variables and counts of previous year’s diagnoses. State-of-the-art
accuracy has been reached by random forests and ensembles (Rose, 2016; Shrestha et al.,
2018; Breiman, 2001). Here, we develop models that use individual trajectories of disease
diagnoses and treatments as input. Risk adjustment poses several constraints compared with
typical machine learning applications (Ellis et al., 2018): 1) Restrictions on features : personal
identifiers must be removed to protect privacy. Sensitive features e.g. race or income, may
also be necessary to remove for fairness. Variables such as current year’s spending, even if
highly predictive for next year’s spending, can’t be used, to maintain incentives to control
cost (otherwise providers could increase their revenue next year by treating more this year);
2) Transformations of the dependent variable: risk adjustment models often use ‘top-coding’
i.e. truncating the spending at some value. The motivation is that costs of heavy users of
healthcare services may be compensated from a separate budget; 3) Accommodating time lag
between estimation and use of the model. We formulate our model to incorporate restrictions
1) to 2), and demonstrate the model’s ability to generalize across years without any data
from future target years, as demanded by 3).

In addition to the constraints arising from the application, the sequential time series
healthcare data poses some challenges that have not been fully addressed by previous works,
and we suggest some enhancements to the architecture of existing RNN models. First, the
observations come with irregular time intervals, and multiple diagnoses may be recorded
at a single time point. To aid the vanilla Long Short Term Memory (LSTM) model in
handling this, we added an embedding convolution layer which improves both the accuracy
and training time compared to simply aggregating all the embeddings within a time step.
Second, when using an RNN for regression, the output obtained from the RNN cell after the
last time step is passed onto a stack of Fully Connected (FC) layers to make the prediction
(Zhang et al., 2018b). With longer sequences, the problem of vanishing gradients (Hochreiter,
1998) could zero out the signals from input elements that show up early in the sequence. To
tackle this, we added a multi-headed attention layer (Vaswani et al., 2017) that attends to
the outputs from all the time steps of the RNN layer. These modifications help reduce the
training time and improve the model accuracy and stability.

Our contributions can be summarized as follows:

• Introducing the problem of risk adjustment to the machine learning community, and
presenting the first model for this application using state-of-the-art deep learning
techniques and data on individual trajectories.

• Architectural enhancements, the embedding to handle multiple codes per visit and
the multi-headed attention, to improve the accuracy and stability while reducing the
training time.

• Empirical experiments with nationwide data on the elderly, which demonstrate that
sequential deep learning models outperform all the count-based baselines, even with a
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training set of 100,000 patients (roughly 10% of our dataset). This goes against the
common misconception that deep learning models require very large datasets to show
appreciable results.

2. Related Work

Recent works involving EHR data can be broadly classified into those that view the data
sequentially and those that aggregate the counts of different medical codes. Even though
deep learning methods have not been applied to the problem of predicting patient visits, they
have been applied to other problems using the same data format, i.e., treating EHR data as
sequences to make predictions. Lipton et al. (2015) used sequential real-valued measurements
of 13 different vital measurements to predict one of 128 diagnoses using LSTM, while Choi
et al. (2016a) applied a 2-layered Gated Recurrent Unit (GRU) model on diagnosis, procedure
and medication sequence to predict the diagnosis for the next visit.

Attention based models have improved the state-of-the-art in tasks from various domains
(Cui et al., 2016; Ba et al., 2014; Bahdanau et al., 2014; Chorowski et al., 2015; Hermann
et al., 2015; Xu et al., 2015; Paulus et al., 2017). This is owed to the fact that attention
mechanisms provide the neural network the ability to focus on a small subset of the input
to make its prediction. Naturally, attention mechanisms have been utilized in EHR as well,
to achieve impressive results; Choi et al. (2016b) added attention mechanism to the RNN
model in Choi et al. (2016a) to improve interpretability, Ma et al. (2017) use a Bi-directional
RNN model Schuster and Paliwal (1997) with attention mechanism, Song et al. (2018) uses
the encoder from an RNN-less, Transformer model (Vaswani et al., 2017) evaluated on
a multi-task learning benchmark established on the MIMIC-III (Johnson et al., 2016) by
Harutyunyan et al. (2019).

3. Cohort

The data for this study was sourced from the Register of Primary Health Care Visits
(AvoHilmo, avo) of Finnish Institute for Health and Welfare, THL and consists of out-patient
visit information for every Finnish citizen aged 65 or above. This pseudonymized dataset
consists of demographic information such as age and gender, as well as the diagnosis and
procedure codes assigned for each patient visit collected between the years 2012 − 2018.
Unlike the in-patient hospitalization records, the term “patient visit” applies more broadly
here and could also include other (sometimes more frequent) forms of contact with the health
professionals, e.g., periodic health checkups, over-the-phone consultations, personal home
care visits by a nurse. As a result, the distribution for the input number of patient visits is
highly skewed with a very long tail.

The raw tabular data consisting of diagnosis and procedure codes for each patient visit
was transformed to be sequential by grouping the rows based on both PatientID and VisitID
(which are unique numeric codes assigned to each pseudonymized patient and hospital visit
respectively). The intra-visit diagnosis codes appear in the same order with which the GP
recorded them into the register. Though not strictly enforced, GPs are advised to enter the
primary diagnosis as the first entry. In order to transform the processed data into a form that
would be similar to natural language, the groupings based on VisitID are space-separated
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Table 1: Basic statistics of EHR dataset across all years (2012-2018)

# of unique patients 1,396,766 Max # of codes per visit 47
# of visits 271,103,617 # of unique ICD-10 codes 12,082
Avg. # of visits per patient 182.733 # of unique ICPC-2 codes 1,360
Avg. # of codes per visit 2.783 # of unique procedure codes 495

and those based on PatientID are semicolon-separated. The resulting dataset consisted of
1,396,766 patient sequences across the years 2012− 2018 with an average of 182.733 visits
per patient. Table 1 lists some basic statistics from the data.

Further, our dataset consists of two types of diagnosis codes - International Classification
of Diseases (ICD-10) and International Classification for Primary Care (ICPC-2). ICPC-2
codes are more common in AvoHilmo and are usually assigned by a non-doctor. We designed
all our models to be agnostic to the codes, so in all our experiments, we do not specifically
distinguish between the diagnosis and procedure codes. The code syntax for ICD-10 and
ICPC-2 overlap considerably, so in order to distinguish between them, we prefixed the ICPC-2
codes with “IP-”.

4. Methods

In this section we take a closer look at the data representation and then discuss the details
of the analyses and model architecture used for prediction.

4.1. Baseline models

This dataset is being modelled with sequential models for the first time and hence, we devised
strong benchmarks to evaluate the sequential models against two non-sequential, count-based
baseline models - Lasso Regression and Gradient Boosted Trees (GBDT) (Chen and Guestrin,
2016). Lasso Regression serves as a highly interpretable linear model benchmark and GBDT
is our strong boosted ensemble benchmark. Tree based ensembles, specifically Random
Forests (Breiman, 2001), have been the state-of-the-art in problems with similar objectives
(Rose, 2016). GBDT trains an ensemble of weak decision trees in a forward fashion such
that each tree is trained on the residual error of the preceding tree. In our implementation,
we have used the LightGBM variant of GBDT which grows each tree leaf-wise and is thus
faster and more accurate (Ke et al., 2017).

For these models, we use the TF-IDF encoding to convert the categorical tokens to
numerical form. TF-IDF is a form of bag-of-words (BoW) representation where a sequence
from a dataset containing |V | unique tokens is transformed into an array x ∈ <|V |. Each
index i in x corresponds to a token in V and each element xi is the count of the ith token
in the sequence. One disadvantage of using BoW directly is that the tokens that occur
frequently in the data will tend to dominate the sequence vectors, so the TF-IDF encoding
divides the frequency of a token in the sequence by the inverse document frequency, which
is computed as idf(t,D) = log N

|d∈D:t∈d| , where D is the set of all the patient sequences,
N = |D| and |d ∈ D : t ∈ d| is the number of patient sequences where the token t occurs.
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Figure 1: Deep sequential model formulation of individual health records. Left Overall
architecture of the Long Short Term Memory (LSTM) model (Fully Connected layers have
been omitted for clarity). D is the code embedding dimension and T is the maximum
number of visits; Right Convolutional embedding. The intra-visit dimension is 48, which
corresponds to the maximum number of codes in a single visit, and each green square denotes
a convolutional layer.

Besides comparing the predictive performance based on R2 score (Eq. 4) and Mean
Absolute Error (MAE), we also test their ability to retain the predictive power for predicting
healthcare services usage for one and two years. This study on model generalization to future
years is further discussed in Section 5.5.

4.2. Sequential deep learning model

Even though the backbone of our sequential deep learning model is a stack of RNN layers,
there were other modules that served as the scaffolding for transforming the raw sequences
into the form suitable for RNNs.

4.2.1. EHR data representation

The EHR data when viewed sequentially, can be conceptualized as a multi-variate time series.
However, the time and frequency of visits varies vastly among patients, so fixing a single time
frame of reference for all the patients would result in highly sparse sequences. We instead use
the tuple (t,Xt) as a data-point, where t is the timestamp and Xt contains the observations
(diagnosis and procedure codes) for the tth visit. Further, we also encode the time difference
(in days) between each visit by concatenating the ∆t with Xt. With this representation, the
length of the input sequence will vary for different patients, to handle this we pad short
sequences with zeros at the end.

The input code sequence X, consisting of the diagnosis and procedure codes c ∈ V , is
first one-hot-encoded (OHE) to ĉ ∈ <|V |, where ĉp = 1 for the pth code in the vocabulary V
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and is zero elsewhere. Further, multiple codes associated with each time step, t, were stacked
along the intra-visit axis, j. The resulting vector Xt for each time step is of size V × J ,
where J is the length of the intra-visit axis. Other numerical features such as the patient
age, gender and basic statistics such as “average # of days between visits” were concatenated
to the visit code vector at each time step, Xt, before being passed onto the machine learning
models.

4.2.2. Code Embedding layer

We borrow the idea of embedding layer from NLP literature to encode categorical tokens
into dense vectors. The OHE representation suffers from two problems - 1) the input
dimension can become very large if the token vocabulary is high, 2) the dimensions of the
OHE vectors are orthogonal to each other and thus, we are not providing the model with
any inter-dimensional dependency signal.

In the embedding layer, the one-hot encoded vector for each code is multiplied with an
embedding matrix of dimension |V | ×D, thus resulting in a D-dimensional dense vector.
Usually, we set D � |V |, forcing the model to learn inter-dimensional dependencies and
encode them into the dense vectors. The weights of the embedding matrix are learned by
the neural network during training.

4.2.3. Intra-visit embedding aggregator

Each visit could be accompanied by more than one diagnosis or procedure code. Hence each
time-step t, can have several codes cj associated with it. The size of this dimension could
go as high as 47 in our dataset (Table 1). Thus, the embeddings obtained from the code
embedding layer need to be further aggregated along the intra-visit axis, j. Previous work
using sequential EHR data handled this problem by aggregating along this dimension by
simply summing across j (Choi et al., 2016a). The convolutional embedding block (Figure 1)
consists of a sequence of 1× 1 convolution operations. The purpose of 1× 1 convolutions is
to modify the size of the input tensor in the intra-visit axis while preserving the dimensions
along the other directions. The convolutional block consists of three 1× 1 convolutions, we
apply batch normalization and PReLU activation to the tensor between each convolution
layer and add skip-connections (He et al., 2016) between the first and third layers. Treating
the intra-visit codes as the channels of the convolutional layers helps leverage the information
in the ordering of these codes (Section 3). By stacking three convolutional layers separated
by non-linear activation, we have also increased the representative capacity of the model,
thus resulting in improved accuracy and faster convergence (Table 3).

4.2.4. LSTM layer

In recent years, RNNs with Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber,
1997) cells have demonstrated state-of-the-art performance in tasks with sequential data such
as machine translation, speech recognition, time series prediction etc. RNNs are designed to
handle sequential data by sharing the parameter of the RNN cell with all the time-steps. For
completeness, we include the equations defining the various gates used in LSTM below,
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In order to capture the long-term dependencies, the LSTM cell adds internal gating mechanism
in the form of input, forget and output gates (i, f & o respectively in Eq. 1). Xt and ht are
the input and the RNN hidden value at time step t, respectively. As shown in Figure 1, the
intra-visit aggregated embeddings from the convolutional blocks are fed sequentially to the
two LSTM layers.

4.2.5. Multi-headed attention layer

Self-attention, also known as intra-attention, is designed to capture dependencies between
the tokens belonging to the same sequence (Song et al., 2018). Self attention has been used in
many NLP tasks such as machine translation (Vaswani et al., 2017), machine comprehension
(Cui et al., 2016) and language models (Devlin et al., 2018; Radford et al., 2019). Multi-
headed attention consists of multiple copies of these self-attentive layers, all receiving the
same input.

The self-attention module takes as input a key-value pair (kt, vt) and a query qt to
compute the output ot for each time step t. The self-attention coefficient is computed by
first stacking together the qt, kt and vt values along the time-axis to obtain Q,K and V ,
respectively and using the following equation,

Attention(Q,K, V ) = softmax(
QKT

√
T

)× V. (2)

Here, T is the length of the sequence. Since we care about learning dependencies between
each time step, in our case, the key, value and query are all copies of the input sequence,
X. For multi-headed self attention, these attention weights are calculated multiple times
in parallel and the resulting vectors are concatenated together. Finally these concatenated
vectors are projected onto the output space using a fully-connected layer. In the following
equation, W o,WQ

i ,W
K
i & W V

i are the parameters learned by the model (Vaswani et al.,
2017).

MultiHead(Q,K, V ) = Concat(head0, head1, . . . , headh)W o,where

headi = Attention(QWQ
i ,K

K
i , V

V
i )

(3)

In our model, this sequence of attention coefficients is aggregated across the time-steps using
average or max pooling before being combined with the output from the last hidden state of
the LSTM, using element-wise sum, and finally passed onto two fully-connected layers and
the output layer.

5. Results

5.1. Experiment Setup

Given the code sequences x1, x2, . . . , xT and patient features xnum for years rt−i, . . . , rt−1, rt,
our goal is to predict the number of physical health center visits for the year rt+1. A
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Table 2: Test R2 score for year 2016 (N = # of training examples)

Training Year(s) Lasso LightGBM LSTMmh_attn

N = 10K 0.0381 0.1918 0.1551
2015 N = 100K 0.0372 0.2604 0.2668

N = 500K 0.0367 0.2854 0.2974

N = 10K 0.0744 0.2167 0.1954
2014, 2015 N = 100K 0.0750 0.2839 0.2886

N = 500K 0.0752 0.3094 0.3259

N = 10K 0.0925 0.2416 0.2080
2013, 2014, 2015 N = 100K 0.0918 0.2974 0.3129

N = 500K 0.0913 0.3248 0.3436

validated and reliable model for this objective can help the government and healthcare
providers allocate funds for the future health services usage. Among all the different ways a
patient can contact the healthcare provider recorded in our data, we only predict the number
of physical visits to the healthcare center. Specifically, we counted the visits from the register
that were either classified as “outpatient”, “visiting the hospital” or “customer visit to the
health center reception”, as physical visits. We chose this objective because physical visits
demand higher amount of resources compared to, say, phone consultations. However, as
input to the model, we still include all kinds of contact with the healthcare provider. As
discussed in Section 3, the visits count distribution is highly skewed with a long tail. Since we
are optimizing MSE which penalizes outliers heavily, it is common practice to transform the
counts to log-space (Choi et al., 2016a) or add a “top-code” to the visits counts (Ellis et al.,
2018). We chose to do the latter transformation, truncating the visits at 25, meaning all
patients who are likely to visit the hospital more than twice a month are grouped together.

The RNN model was trained for 30 epochs with early-stopping after 8 epochs if there
is no improvement on validation MSE loss. We also used Dropout (Srivastava et al.,
2014) with p = 0.3 and weight-decay with coefficient 0.0001 for regularization. We used
batch normalization (Ioffe and Szegedy, 2015) between the RNN and FC layers and layer
normalization (Ba et al., 2016) between all other layers. The hidden size of the LSTM cell
was set at 800, increasing the size further improved the performance, but drastically increased
the training time as well. The multi-headed attention layer used 8 attention heads. We
did not use pretrained embeddings for the embedding layer, even though it has been shown
to improve the predictive performance (Choi et al., 2016a), since we wanted to keep the
computation cost as low as possible. As a result, the entire training process can be completed
in under 10 hours using a single GPU. We used the Adam optimizer (Kingma and Ba, 2014)
for performing gradient descent with a batch size of 32 and learning rate 3e − 4, decayed
step-wise every 5 epochs by a factor of 0.5. All RNN models were built using PyTorch (Paszke
et al., 2017) and trained on a machine with a single NVIDIA Tesla V100 GPU. The codebase
for the paper is available at https://github.com/aalto-ml4h/pummel-regression.
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Table 3: Comparing various RNN architectures (two years history on 200K patients)

Model R2 Mean Absolute Error
(MAE)

Runtime
(mins/epoch) Epochs to converge

LSTMsimple 0.3093 2.7333 8.81 29
LSTMconv_emb 0.3115 2.7211 11.5 21
LSTMsimple_attn 0.3033 2.7159 11.6 20
LSTMmh_attn 0.3122 2.7307 12.5 18

We evaluated all the models using MAE and Coefficient of Determination (R2) metric.
R2 compares the MSE of the predictive model with the MSE obtained by predicting each
test example, yi, with the mean, ȳ, and is defined as

R2 = 1−
∑

i(yi − ŷi)2∑
i(yi − ȳ)2

, (4)

where ŷi is the predicted value.

5.2. Effect of the amount of training data

Collecting and processing medical data is expensive, their availability is scarce, and it requires
thorough privacy protection through de-identification before analysis. Thus, we were also
interested in quantifying the amount of data required to achieve satisfactory predictive
performance. To achieve this, we conducted experiments varying the number of patients
available for training and the number of past years given as input. We first randomly sampled
103,548 patients for test and 83,070 patients for validation set, while the training set was
varied between 10K, 100K and 500K patients. Each model was trained to predict the
number of visits for the year 2016 and was optimized to minimize the Mean Squared Error
(MSE). The validation set was used to pick the best hyperparameters for the model before
the final models were evaluated on the test set.

The results on R2 metric are presented in Table 2 and the MAE results are in the
Supplement. The statistical significance of the difference between LSTM and LightGBM
predictions was assessed by computing the p-value using Wilcoxon signed-rank test. The
results were consistently� 1e−10, indicating the differences are highly statistically significant
(due to the very large test set). To assess if there is variability between different training
runs, we retrained our model a second time. The results in the supplement show that the
prediction accuracy is almost exactly the same in the two runs. Finally, we note that the R2

values in Table 2 are in the range expected based on results published for risk adjustment
models. For example, Rose (2016) obtained R2 = 0.26 for random forests and R2 = 0.27
for an ensemble. However, we emphasize that these results are not directly comparable: we
predicted the number of visits whereas Rose (2016) predicted the actual spending, different
data sets with different covariates were used, and Rose (2016) did not treat the data as a
time series.
1. The run time for tensor summation across the intra-visit axis dropped from 28 min to 9 min per epoch after

a PyTorch version upgrade https://github.com/pytorch/pytorch/issues/18807. Because absolute
run time in minutes strongly depends on the code implementation, we instead focus our discussion on the
rate of convergence.
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Table 4: Results from training across all years (2012− 2017) to predict for 2018

Model R2 Mean Absolute Error
(MAE) Spearman Corr.

Lasso 0.0996 2.9548 0.3007
LightGBM 0.3307 2.3657 0.5902
LSTMBIG 0.3656 2.2500 0.6056

5.3. Comparing RNN architectures

We evaluated the two modifications to the simple RNN architecture as discussed in Section
1. For these experiments, we set the number of training examples at 200,000 and the input
years as 2014− 2015 to predict for the year 2016. Other than that, the experiment setup
and the test set was fixed to be the same as that in Section 5.1.

The results from these experiments are presented in Table 3. The convolutional embedding
block to aggregate over the intra-visit axis improved the model’s accuracy and decreased
the convergence time by approximately 38% compared to LSTMsimple, where we just sum
across the intra-visit axis. Further, the attention layer LSTMmh_attn slightly increases the
accuracy and also led to faster convergence than LSTMconv_emb. We also benchmark the
multi-headed attention network with a simpler attention model, structured self attention
(Lin et al., 2017), used with RNNs for text classification.

The idea to use an attention layer that has access to all the hidden states of the LSTM
was motivated from the promising results we obtained by using Bidirectional RNNs (Schuster
and Paliwal, 1997) in our initial experiments. This highlighted the importance of the outputs
from the early hidden states for the model’s predictive accuracy. However, since Bidirectional
RNNs require considerably more computational resources and time to achieve acceptable
performance, we decided on using the attention layers instead.

5.4. Training across all the years

We also ran experiments with input data spanning across all the years between 2012− 2017
to predict patient visits for the year 2018. These experiments were run on all patient data
(as reported in Table 1), with 118,969 and 94,854 patients heldout for test and validation sets
respectively. The results (shown in Table 4) clearly demonstrate the superior results obtained
with the sequential neural networks when we train using very long patient trajectories.

5.5. Model generalization to future years

In practice there is a time lag between training and usage of a risk adjustment model (Ellis
et al., 2018), and it is necessary that the model can generalize to future years without training
data. To explore our model’s robustness in this respect, we first trained a model using years
2014 − 2015 as covariates to predict 2016 visits and then used this model to predict the
visits in years 2017 and 2018 (using data from 2015− 2016 and 2016− 2017 as covariates,
respectively). Intuitively, we expect the sequential models to better capture the features
that get carried over time than the count based models. We see that this is the case in

10



Figure 2: Left, Center : R2 score when inferred on future years (all models were trained with
100K examples to predict 2016, no data from 2017 or 2018 was used in training); Right :
Histogram showing the % relative change in predicted visits if we switch from Lasso or
LightGBM to an LSTM model

Figure 2, which shows the R2 score for all models from years 2016, 2017 and 2018. Somewhat
surprisingly, for Lasso and LSTM the R2 is even slightly higher in 2017 and 2018 (but not
for LGBM), which likely reflects random variation in the data sets between different years.

6. Discussion

We applied state-of-the-art deep learning models to the important problem of predicting
patient healthcare service usage, which has received little attention in the machine learning
community. Except for the smallest data set size, the sequential deep learning model
systematically outperformed the linear baseline (Lasso) and a strong ensemble baseline
(LightGBM) with varying training set sizes and lengths of medical histories. Introducing
the stack of 1× 1 convolutional layers to summarize multiple codes in a single visit brought
about significant improvements in both accuracy and training time, when compared to a
simple aggregation across codes. Furthermore, a slight further improvement was obtained by
using the multi-headed attention. Nevertheless, alternative ways to focus on different parts
of very long sequences of medical events is a topic that still warrants further investigation in
the future.

We conclude by discussing possible practical implications of using our model for resource
allocation. Recall that in risk adjustment, payments to healthcare providers are based on the
predicted costs for individuals registered as customers with the provider. To study the effects
of using LSTM vs. the baselines, we compared the relative change in the predicted value
(and hence hypothetical resource allocation) for each individual in our data set (Figure 2,
right). We see that even if the increase in R2 score is approximately 10%, on individual level
the relative changes in predictions may be much greater. Studying such effects on different
population subgroups, as well as validating the models according to various other criteria
besides prediction accuracy, published in health economics literature (Layton et al., 2018),
are important future topics.
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Appendix A. Results for other metrics

We include the results for different metrics for the same experiments presented in Section 5

Table 5: Test MAE score for year 2016 (N = # of training examples)

Training Year(s) Lasso LightGBM LSTMattn

N = 10K 3.5507 3.1662 3.1826
2015 N = 100K 3.5493 3.0300 3.0050

N = 500K 3.5500 2.975 2.9415

N = 10K 3.3014 2.9055 2.9634
2014, 2015 N = 100K 3.3073 2.7964 2.7971

N = 500K 3.3050 2.7417 2.6854

N = 10K 3.2975 2.7860 2.8898
2013, 2014, 2015 N = 100K 3.2220 2.6958 2.6508

N = 500K 3.2197 2.6398 2.5661

Table 6: Test Spearman Correlation for year 2016 (N = # of training examples)

Training Year(s) Lasso LightGBM LSTMattn

N = 10K 0.1389 0.4107 0.4132
2015 N = 100K 0.1363 0.4672 0.4724

N = 500K 0.1383 0.4883 0.4942

N = 10K 0.2542 0.4680 0.4781
2014, 2015 N = 100K 0.2464 0.5206 0.5161

N = 500K 0.2450 0.5410 0.5462

N = 10K 0.2880 0.5004 0.4941
2013, 2014, 2015 N = 100K 0.2824 0.5489 0.5502

N = 500K 0.2993 0.5700 0.5876
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Appendix B. Results when trained with previous visit count feature

We include results collected from preliminary stages of our study, where we used the # of
previous visits as a feature for both the baselines and the LSTM_simple model.

Table 7: Mean Absolute Error on predicted number of patient visits for the year 2016

Training Year(s) % of Training Data Lasso LightGBM LSTMsimple

2015 1 3.6341 3.4643 3.2223
10 3.6380 3.3189 3.0462
100 3.6411 3.2637 2.9523

2014, 2015 1 3.2971 3.1231 2.8638
10 3.2932 2.9845 2.7328
100 3.2905 2.9430 2.6470

2013, 2014, 2015 1 3.1219 2.9402 2.7262
10 3.1204 2.8293 2.5699
100 3.1154 2.7762 2.4836

Table 8: R2 on predicted number of patient visits for the year 2016

Training Year(s) % of Training Data Lasso LightGBM LSTMsimple

2015 1 0.0725 0.1323 0.0998
10 0.0704 0.1976 0.1870
100 0.0698 0.2214 0.2334

2014, 2015 1 0.1121 0.1608 0.1590
10 0.1102 0.2200 0.2132
100 0.1112 0.2384 0.2486

2013, 2014, 2015 1 0.1171 0.1563 0.1288
10 0.1171 0.2150 0.2251
100 0.1170 0.2372 0.2531
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Appendix C. Validating the LSTM model across multiple runs

Since the LSTM based deep sequential model architecture has several inherent uncertainties
due to random initialization of weights, dropout probability, etc., we trained the entire
model one other time in order to verify if the results from the first and the second runs are
comparable. These results are presented in table 9.

Table 9: Test R2 score for year 2016 (N = 500K) using LSTM model for multiple runs

Training Year(s) Run 1 Run 2

2015 0.2974 0.2971
2014, 2015 0.3259 0.3242
2013, 2014, 2015 0.3436 0.3484
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Appendix D. Parameters for the LightGBM model

In this section we list the parameters used in the LightGBM model.

Table 10: LGBM Parameters

Parameter Value

Boosting type GBDT
Objective Poisson
Metric MSE
# of leaves 128
Max depth -1
Learning rate 0.01
Feature fraction 0.8
Early stopping round 100
# of estimators 10,000
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