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Abstract
We present an image translation approach to generate augmented data for mitigating
data imbalances in a dataset of histopathology images of colorectal polyps, adenomatous
tumors that can lead to colorectal cancer if left untreated. By applying cycle-consistent
generative adversarial networks (CycleGANs) to a source domain of normal colonic mucosa
images, we generate synthetic colorectal polyp images that belong to diagnostically less
common polyp classes. Generated images maintain the general structure of their source
image but exhibit adenomatous features that can be enhanced with our proposed filtration
module, called Path-Rank-Filter. We evaluate the quality of generated images through
Turing tests with four gastrointestinal pathologists, finding that at least two of the four
pathologists could not identify generated images at a statistically significant level. Finally,
we demonstrate that using CycleGAN-generated images to augment training data improves
the AUC of a convolutional neural network for detecting sessile serrated adenomas by over
10%, suggesting that our approach might warrant further research for other histopathology
image classification tasks.

1. Introduction

Accurately analyzing medical images with deep learning classifiers often requires large,
balanced datasets. For many diseases, however, the distribution of disease sub-classes
in collected datasets is heavily skewed by each class’s prevalence among patients, and so
detecting rare diseases in medical images with deep learning can be challenging. In these
situations, a reliable method of data augmentation can mitigate the effects of data imbalance
by preventing overfitting and thus improving overall performance.

Previous work in data augmentation includes both traditional augmentation methods
(rotations, flips, color jittering, etc.) and, more recently, generative models that synthesize
completely new images. Since their development, generative adversarial networks (GANs)
(Goodfellow et al., 2014), which use noise as an input variable, have been a popular method
of generating augmented data for improving image classification (Perez and Wang, 2017;
Salehinejad et al., 2017). We hypothesized that, in the field of medical image analysis, data
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from one class might contain useful information to synthesize new data for another. As such,
generative image translation models might suit this task better than models that do not
account for information in other classes (e.g., models that use random noise as a basis for
image generation).

In this paper, we present an image translation model for generating synthetic colorectal
histopathology images. Since adenomatous preneoplastic polyps always originate from normal
colonic mucosa, we use normal colonic mucosa as a source domain to generate synthetic
images that are similar in structure but present adenomatous features. Our work makes the
following contributions:

1. We demonstrate an image translation model that generates synthetic images of adeno-
matous colorectal polyps and propose a filtration module called Path-Rank-Filter that
enhances the presence of adenomatous features in generated images.

2. We evaluate the quality of generated images through Turing tests with four gastroin-
testinal pathologists, finding that for the two adenomatous polyp classes tested, at
least two of four pathologists could not distinguish between synthetic and real polyp
images at a statistically significant level.

3. We show that using generated images as augmented data for training improves the
AUC of a convolutional neural network in detecting sessile serrated adenomas by over
10%, indicating that our approach might be useful for other histopathology image
classification tasks.

Our code for this project is publicly available.1

2. Related Work

Generative adversarial networks (GANs) have commonly been used in the field of medical
image analysis. For magnetic resonance imaging (MRI) scans, Nie et al. (2016) used context-
aware GANs to generate computed topography (CT) images from MRIs, and Yang et al.
(2018) used conditional GANs (cGANs) to generate target modality MRIs given a particular
source modality MRI. Furthermore, Dar et al. (2018) used cGANs to generate fake T1 and
T2 MRIs and used an improved methodology by using end-to-end training of GANs that
synthesize target images given source images. Hiasa et al. (2018) also translated MRIs to
CT images with CycleGANs, adding a gradient consistency loss to encourage edge alignment
between images. Salehinejad et al. (2018) used DCGANs to generate fake chest x-ray images
from real ones, though the resulting fake images were at a lower resolution than real images,
and Wang et al. (2018) used cGANs to reduce artifacts in CT images by learning to map an
artifact-affected CT image to an artifact-free CT image.

In the field of histopathology in particular, many studies have used GANs for both image
generation and image translation. Both Bayramoglu et al. (2018) and Rana et al. (2019)
used cGANs to virtually stain Haemotoxylin and Eosin (H&E) lung tissue histopathology.
Similarly, Hou et al. (2017) and Quiros et al. (2019) generated fake histopathology samples
with GANs, and Burlingame et al. (2018) used cGANs to translate pancreas tumors from

1. https://github.com/BMIRDS/HistoGAN

2

https://github.com/BMIRDS/HistoGAN
https://github.com/BMIRDS/HistoGAN


Colorectal Image Translation

H&E-stained to immunofluorescent. In terms of stain normalization, Bentaieb and Harmarneh
(2017) used a GAN to normalize tissue samples in order to remove natural discolorations
from tissue staining, and Cho et al. (2017) performed stain style transfer by replacing stain
normalization models with cGANs. Moreover, Zanjani et al. (2018) integrated a Convolutional
Neural Network (CNN) and Gaussian Mixture Model to jointly optimize the modeling and
normalizing of color and intensity in H&E stained images.

In terms of data augmentation, both conventional methods and GANs have been used in
previous research. Hussain et al. (2017) found that effective methods of data augmentation for
images primarily include strategies such as flips, Gaussian noise, jittering, Gaussian blurring,
and rotations, and Li et al. (2010) addressed class imbalances by oversampling abnormal
classes and undersampling normal classes. For generative methods, Bass et al. (2019)
synthesized augmented biomedical images with convolutional capsule GANs. Additionally,
Gupta et al. (2019) used CycleGANs on x-ray images to generate augmented images of bone
lesions, which were then added to a training set to improve a bone lesion classifier’s AUC by
5%. Both papers, however, did not manually evaluate the quality of their generated images,
and Gupta et al. (2019) did not have extensive ablation studies to provide insight on how
their method could be applied to other datasets.

In our study, we apply CycleGAN to a colorectal histopathology image dataset to generate
augmented data. We propose a filtration module called Path-Rank-Filter that improves
the quality of generated images for some classes and perform extensive ablation studies.
Furthermore, we evaluate our generated images manually with four pathologists and compare
our CycleGAN model’s ability to improve classifier performance with that of two other
generative models: DCGAN (Radford et al., 2015) and DiscoGAN (Kim et al., 2017).

3. Image Translation in Colorectal Histopathology Images

Here, we discuss our approach for applying generative image translation to a dataset of
colorectal histopathology images. We focus on cycle-consistent generative adversarial networks
(Zhu et al., 2017) and propose a simple filtration module called Path-Rank-Filter that enhances
the adenomatous features in generated images. Additionally, we describe the process of
collecting our dataset as well as our experimental setup.

3.1. Cycle-Consistent Generative Adversarial Networks

We use a cycle-consistent generative adversarial network (CycleGAN) (Zhu et al., 2017)
model to translate images of normal colonic mucosa to images of adenomatous colorectal
polyps. Given two domains, X and Y , with training samples {xi}Ni=1, where xi ∈ X, and
{yi}Ni=1, where yi ∈ Y , CycleGAN learns the mapping G : X → Y for unpaired image
translation. For colorectal polyp images, we set X as normal colonic mucosa, which has
many images, and Y as a less common polyp type with few images (e.g., tubular adenoma
or sessile serrated adenoma) so that we can mitigate the imbalance of class Y by generating
a set of augmented data {G(xi)}Ni=1 that presents features of domain Y .
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3.2. Path-Rank-Filter

Because histopathology images differ in nature from images in standard computer vision
datasets (e.g., MNIST or ImageNet), we propose a module called Path-Rank-Filter that
improves CycleGAN’s performance specifically for histopathology images. Whereas dis-
tinguishing between common classes in computer vision (e.g., cats and dogs) is relatively
straightforward, histopathology images can contain a range of histologic features that deter-
mine whether an image can be classified as adenomatous. For instance, both an image with
small amounts of tubular architectures and an image covered by tubular architectures would
be classified by a pathologist as a tubular adenoma. We hypothesize that images with more
prominent features will be more useful for training, and so instead of training a CycleGAN
on the original {xi}Ni=1 and {yi}Ni=1 , we introduce the following filtration process (Figure 1):

1. We train a ResNet (He et al., 2015) f to classify X and Y . We define fY (yi) as the
output probability of the ResNet for class Y when given image yi as the input.

2. Then, we run the ResNet on all {yi}Ni=1 . For some α ∈ (0, 1], we find {y}α ⊂ {yi}Ni=1

such that for all yi ∈ {y}α , fY (yi) is in the highest α of all output probabilities
{fY (yi)}Ni=1 .

3. We train CycleGAN on {xi}Ni=1 and {y}α instead of {xi}Ni=1 and {yi}Ni=1.

Figure 1: Process for generating synthetic histopathology images of rare colorectal polyp
classes. Path-Rank-Filter (i-ii) enhances the adenomatous features in generated
images by filtering the training data for CycleGAN for only images with strong
adenomatous features.

Path-Rank-Filter uses the knowledge that an adenomatous class Y includes images with
a range of histologic features. It thus finds the images with the strongest features that are
most representative of class Y and uses those images to train CycleGAN.
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3.3. Dataset Collection

Our dataset of colorectal polyp images was collected from the Dartmouth-Hitchcock Medical
Center in New Hampshire, USA, our tertiary medical institution. We collected 427 high-
resolution whole-slide images, which we split into a training set of 326 whole-slide images
and a testing set of 101 whole-slide images. For the training set, pathologists annotated all
whole-slide images with bounding boxes representing regions of interest, for a total of 3517
variable-size image crops. Each image crop was labeled with a single class for the polyp
type, which was either benign (normal or hyperplastic), or adenomatous (tubular adenoma,
tubulovillous/villous adenoma, or sessile-serrated adenoma). The distributions of different
classes in our training set is shown in Figure 2.

For the testing set, pathologists annotated the whole-slide images for fixed-size tiles of
classic examples of polyp types (224× 224 pixels), and polyp type labels were verified by
two pathologists so that our evaluation was as close to ground truth as possible. Our final
testing set, which is used in section 4.3, had 261 hyperplastic polyp images and 39 sessile
serrated adenoma images.

3.4. Experimental Setup and Motivation

In this study, we set tubular adenoma (TA) and sessile serrated adenoma (SSA), two
adenomatous polyp types that respectively account for only 14.8% and 3.3% of our dataset
by size, as the target domains for data generation. As a source domain, we use normal
colonic mucosa images, since both tubular and sessile serrated adenomas emerge as a result
of cytological transformations on normal colonic mucosa. For all classifiers, we use the
ResNet architecture (He et al., 2015) and train each classifier for 20 epochs. We conducted
an ablation study for our particular classification task and found that increasing the depth
of the neural network did not substantially improve performance (Supplementary Figure
1). Thus, for all experiments, we used the model with the lowest number of parameters,
ResNet-18, so that experiments can be replicated more quickly.

4. Experiments

We perform extensive experiments to evaluate the ability and usefulness of generative image
translation on colorectal polyp histopathology images. We measure the strength of our
filtering method using a pre-trained classifier, finding that CycleGAN with Path-Rank-Filter
generates images that are substantially closer to the target domain (i.e. exhibit more
adenomatous features) than when Path-Rank-Filter is not used. Next, we perform a clinical
evaluation of our images by conducting a Turing test with four gastrointestinal pathologists,
finding that three of the four pathologists could not differentiate at least half of the synthetic
images from real images. Finally, we evaluate how adding the generated images as augmented
data for training a ResNet classifier can improve performance for detecting sessile serrated
adenomas, a clinically important distinction in colorectal cancer screening.

While we limit the scope of this paper to a single source domain, normal colonic mucosa,
we show qualitative results of experiments on other source domains in Supplementary Figure
6.
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Figure 2: Distribution for collected dataset of colorectal polyp histopathology images. HP:
hyperplastic polyp, NO: normal colonic mucosa, TVA: tubulovillous/villous ade-
noma, TA: tubular adenoma, SSA: sessile serrated adenoma. Two diagnostically
relevant classes of adenomatous polyps, tubular adenoma (TA) and sessile serrated
adenoma (SSA), comprise only 14.8% and 3.3% of the dataset, respectively.

4.1. Enhancing Adenomatous Features with Path-Rank-Filter

In this experiment, we evaluate how Path-Rank-Filter can select a subset of the adenomatous
training images with the strongest adenomatous features for CycleGAN so that the generated
images will also have a strong presence of features representing the desired class. For the three
adenomatous classes of polyps (tubular, tubulovillous/villous, and sessile serrated), we apply
CycleGAN using Path-Rank-Filter with filtration parameter values of α = {12 ,

1
4 ,

1
8 ,

1
16 ,

1
32}

on the 9054 normal colonic mucosa images in our training set to generate 9054 images of
the target adenomatous class. We then measure the prominence of adenomatous features in
our generated images by using a pre-trained classifier to evaluate the percent of generated
images that were actually classified as the intended target class (Table 1).
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Polyp Class α = 1 α = 1/2 α = 1/4 α = 1/8 α = 1/16 α = 1/32

TA 35.4 64.4 79.6 87.6 89.2 93.8
TVA 32.7 67.3 49.4 63.1 85.9 86.1
SSA 37.0 20.9 21.5 38.5 23.4 43.7

Table 1: Percent of synthetic images generated by a CycleGAN with various α parameters
for Path-Rank-Filter that were classified by a pre-trained classifier as the intended
class. 9054 synthetic images were evaluated for each class and α value. TA: tubular
adenoma, TVA: tubulovillous/villous adenoma, SSA: sessile serrated adenoma.

Based on this evaluation metric, Path-Rank-Filter substantially enhanced adenomatous
features in generated images for TA and TVA. For these two classes, the highest classification
performance was at α = 1

32 , with the pre-trained classifier correctly detecting 93.8% of
generated images for TA and 86.1% for TVA. These high accuracies seem to reflect the
nature of these two adenomatous classes, for which images in the training set reflect a range
of features. TA images are defined by hyperchromatic, pencillate nuclei; pathologists will
label both images with small hints of pencillate nuclei and obviously strong tubular features
as tubular. Of the same nature, TVA images are characterized by finger-like extensions with
hyperchromatic, pencillate nuclei, and therefore some images will have more villous features
than others.

For SSA, on the other hand, Path-Rank-Filter did not significantly improve the per-
formance. We hypothesize that this result reflects the differing nature of SSAs, which are
classified by the presence of a single broad-based crypt. Unlike TAs and TVAs, SSAs do not
present a spectrum of histological features, and so it makes sense that Path-Rank-Filter does
not choose a better subset of SSAs for training CycleGAN, and therefore generated images
did not exhibit stronger features of SSAs.

Furthermore, we select example images to examine the histologic features as we use
different filtration parameters (Figure 3). For TA, we see that CycleGAN transforms normal
crypts by introducing pencillate nuclei into the crypt borders, altering cell color, and merging
small crypts into more complex structures. For TVA, crypts become more elongated and
finger-like for smaller α parameters. For SSA, however, the quality of adenomatous features
did not substantially improve with smaller α parameters; perhaps the SSA example shown
when using all images for training α = 1 has the strongest features, although interpretations
might differ among pathologists. More examples of generated images for varying α are shown
in Supplementary Figures 2 (TA), 3 (TVA), and 4 (SSA). Generated images of tubular
adenomas after various epochs are shown in Supplementary Figure 5.

4.2. Evaluation by Pathologists

We further measure the quality of generated adenomatous images through clinical evaluation
by four gastrointestinal pathologists. For the tubular and sessile serrated classes,2 the
two least common classes in our dataset, we presented the four pathologists with a set of

2. Manual evaluation is costly, and so we do not evaluate tubulovillous/villous adenoma in this paper.
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Figure 3: CycleGAN’s generated images for different values of α. For instance, α = 1/4means
that the top 25% of images with the highest output probabilities from a ResNet
were used to train CycleGAN. TA: tubular adenoma, TVA: tubulovillous/villous
adenoma, SSA: sessile serrated adenoma. For TA and TVA, adenomatous features
were enhanced at smaller α values.

200 unlabeled images: 100 real images and 100 generated (fake) images. Each pathologist
independently classified each image as either real or fake. As shown in Figure 4, at least half
of the pathologists could not distinguish real and fake images at a statistically significant
level, correctly distinguishing some fake images while also incorrectly labeling real images as
fake.

We also perform statistical analysis on the pathologists’ overall accuracies, using x0 = 0.5
as the expected accuracy for random guessing and each pathologist’s accuracy on the n = 200
images as x̂ to calculate the z-score for each pathologist (Equation 1).

z =
x̂− x0√
x0(1−x0)

n

(1)

We then calculate p for each pathologist given the null hypothesis H0 : x̂ = x0. With this
configuration, a p-value where p < 0.05 is statistically significant (i.e., the pathologist is able
to distinguish between real and fake images).

For tubular adenoma images, only one pathologist was able to differentiate real images
from synthetic images at a statistically significant level. For sessile serrated adenoma images,
two pathologists were able to distinguish between real and synthetic images at a statistically
significant level. Based on feedback from pathologists, fake sessile serrated adenoma images
were easier to identify because our CycleGAN model created a subtle mosaic-like pattern in
the whitespace of images. Sessile serrated adenomas tended to have more whitespace because
they are defined by a single large crypt (of mostly whitespace), which might explain why it
was easier to detect fake sessile serrated adenomas than tubular adenomas.
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Figure 4: Results of Turing test for whether gastrointestinal pathologists could distinguish
real and fake images of tubular adenomas (A) and sessile serrated adenomas
(B). Left: example real and generated images that were classified correctly and
incorrectly by pathologists, with the number of pathologists who labeled the image
as such denoted in the lower left corner. Right: evaluation of real and fake images
by four pathologists.

4.3. Improving Classifier Performance

Image translation can mitigate class imbalances in training sets by generating synthetic
images of rare classes. We generated synthetic images of sessile serrated adenomas (only
represented by 3% of the training set) and used them as augmented data for training a
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ResNet classifier to distinguish between hyperplastic polyps (benign) and sessile serrated
adenomas (adenomatous), a clinically important task in colorectal cancer screening (Korbar
et al., 2017a,b). We applied CycleGAN to all 9054 normal colonic mucosa images in our
training set to generate 9054 images of the sessile serrated class, and added these images
into the training set. Then, we used this dataset for training a ResNet and evaluated it
on a test set of 261 hyperplastic polyp images and 39 sessile serrated adenoma images,
comparing our ResNet’s performance with that of ResNets trained on generated data from
DiscoGAN and DCGAN, as well as ResNets trained without augmented data (Figure 5A).
Including CycleGAN-generated images for training boosted classification AUC by over 10%,
outperforming DCGAN-generated images and DiscoGAN-generated images.

We also train ResNet on a training set consisting of the same real hyperplastic images
but with synthetic images as the only available sessile serrated adenoma images (Figure 5B).
Once again, the model trained on CycleGAN-generated images outperformed the models
trained on DCGAN-generated images and DiscoGAN-generated images by 8% and 23%,
respectively. In both experiments, the ResNet that was trained using CycleGAN-generated
images achieved the highest AUC.

Figure 5: A: AUCs of ResNets trained on real images with synthetic images from different
generative models given as additional training data. B: AUCs of ResNets trained
without real images and with synthetic images from different generative models as
the only available training data. In both experiments, the ResNet that was trained
with CycleGAN’s synthetic images had the highest AUC.

5. Limitations and Discussion

Although we show some promising results in terms of image quality and ability to improve
the performance of a ResNet classifier, our study has notable limitations. First, fair manual
evaluation of images is non-trivial. Even though the pathologists in our study have years
of experience examining colorectal polyp slides, these Turing tests do not perfectly reflect
image quality, since pathologists do not distinguish real and fake data as a task in clinical
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practice. Furthermore, variation in results suggest that distinguishing fake images might
depend highly on the individual pathologists, and some pathologists reported that they
could better distinguish real and fake images as they saw more images. Finally, we only
showed pathologists fixed-sized tiles of images; generating an entire high-resolution slide with
high-quality features is a substantially more challenging task.

In terms of improving classifier training, we had hoped that training with synthetic data
would achieve the same performance as training with real data, but a ResNet trained on only
synthetic SSA images achieved an AUC of only 0.68 (Figure 5), much lower than the AUC of
a classifier trained on both real and synthetic data (0.89). This result suggests that although
the quality of a single generated image might be comparable to that of a single real image,
the quality of the set of generative images likely does not match that of a set of real images.

Our paper has explored image translation for data augmentation in colorectal histopathol-
ogy images. Whereas most work in generative data augmentation focuses on generating
images from random noise, we note that images from other classes might be helpful in
the field of histopathology and therefore take an image translation approach. Future work
might include evaluating our method on other datasets to evaluate the generalizability of our
approach.
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Supplementary Figures

Supplementary Figure 1: Validation accuracy of ResNet classifiers of varying depth. Perfor-
mance did not improve substantially for deeper networks.

Supplementary Figure 2: Examples of tubular adenoma images generated by CycleGAN
with Path-Rank-Filter at varying α levels. Adenomatous features
were enhanced at lower α.
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Supplementary Figure 3: Examples of tubullovillous/villous adenoma images generated by
CycleGAN with Path-Rank-Filter at varying α levels. Adenoma-
tous features were enhanced at lower α.

Supplementary Figure 4: Examples of sessile serrated adenoma images generated by Cycle-
GAN with Path-Rank-Filter at varying α levels. Using lower α
values did not enhance the features of seesile serrated adenomas.
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Supplementary Figure 5: Examples of tubular adenoma images generated by CycleGANs
trained for 5, 10, 25, 50, 100, and 200 epochs. Convergence occurred
at approximately 200 epochs.

Supplementary Figure 6: Tubular adenoma images generated with CycleGAN using dogs
from ImageNet and lung biopsy tissue samples as source domains.
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