ML4H 2021
  • Home
  • Accepted Papers
  • Attend
    • Registration
    • Participation Guide
    • Schedule
    • Speakers
    • Research Roundtables
    • Career Mentorship
    • Raffle
    • Code of Conduct
  • Submit
    • Call for Participation
    • Writing Guidelines
    • Reviewer Instructions
    • Submission Mentorship
    • Reviewer Mentorship
  • Organization
    • About
    • Organizers
  • Past Events
    • 2020
    • 2019
    • 2018
    • 2017
    • 2016

Interpretable ECG classification via a query-based latent space traversal (qLST)

Melle B. Vessies*, Sharvaree P. Vadgama*, Rutger R. van de Leur, Pieter A. Doevendans, Rutger J. Hassink, Erik Bekkers, René van Es

Abstract: Electrocardiography (ECG) is an effective and non-invasive diagnostic tool that measures the electrical activity of the heart. Interpretation of ECG signals to detect various abnormalities is a challenging task that requires expertise. Recently, the use of deep neural networks for ECG classification to aid medical practitioners has become popular, but their black box nature hampers clinical implementation. Several saliency-based interpretability techniques have been proposed, but they only indicate the location of important features and not the actual features. We present a novel interpretability technique called qLST, a query-based latent space traversal technique that is able to provide explanations for any ECG classification model. With qLST, we train a neural network that learns to traverse in the latent space of a variational autoencoder trained on a large university hospital dataset with over 800,000 ECGs annotated for 28 diseases. We demonstrate through experiments that we can explain different black box classifiers by generating ECGs through these traversals.

Poster
Abstract: Electrocardiography (ECG) is an effective and non-invasive diagnostic tool that measures the electrical activity of the heart. Interpretation of ECG signals to detect various abnormalities is a challenging task that requires expertise. Recently, the use of deep neural networks for ECG classification to aid medical practitioners has become popular, but their black box nature hampers clinical implementation. Several saliency-based interpretability techniques have been proposed, but they only indicate the location of important features and not the actual features. We present a novel interpretability technique called qLST, a query-based latent space traversal technique that is able to provide explanations for any ECG classification model. With qLST, we train a neural network that learns to traverse in the latent space of a variational autoencoder trained on a large university hospital dataset with over 800,000 ECGs annotated for 28 diseases. We demonstrate through experiments that we can explain different black box classifiers by generating ECGs through these traversals.

Back to Top

© 2021 ML4H Organization Committee