ML4H 2021
  • Home
  • Accepted Papers
  • Attend
    • Registration
    • Participation Guide
    • Schedule
    • Speakers
    • Research Roundtables
    • Career Mentorship
    • Raffle
    • Code of Conduct
  • Submit
    • Call for Participation
    • Writing Guidelines
    • Reviewer Instructions
    • Submission Mentorship
    • Reviewer Mentorship
  • Organization
    • About
    • Organizers
  • Past Events
    • 2020
    • 2019
    • 2018
    • 2017
    • 2016

Unifying Heterogenous Electronic Health Records Systems via Text-Based Code Embedding

Kyunghoon Hur*, Jiyoung Lee*, Jungwoo Oh, Wesley Price, Young-Hak Kim, Edward Choi

Abstract: EHR systems lack a unified code system forrepresenting medical concepts, which acts asa barrier for the deployment of deep learningmodels in large scale to multiple clinics and hos-pitals. To overcome this problem, we introduceDescription-based Embedding,DescEmb, a code-agnostic representation learning framework forEHR. DescEmb takes advantage of the flexibil-ity of neural language understanding models toembed clinical events using their textual descrip-tions rather than directly mapping each event toa dedicated embedding. DescEmb outperformedtraditional code-based embedding in extensiveexperiments, especially in a zero-shot transfertask (one hospital to another), and was able totrain a single unified model for heterogeneousEHR datasets.

Poster
Abstract: EHR systems lack a unified code system forrepresenting medical concepts, which acts asa barrier for the deployment of deep learningmodels in large scale to multiple clinics and hos-pitals. To overcome this problem, we introduceDescription-based Embedding,DescEmb, a code-agnostic representation learning framework forEHR. DescEmb takes advantage of the flexibil-ity of neural language understanding models toembed clinical events using their textual descrip-tions rather than directly mapping each event toa dedicated embedding. DescEmb outperformedtraditional code-based embedding in extensiveexperiments, especially in a zero-shot transfertask (one hospital to another), and was able totrain a single unified model for heterogeneousEHR datasets.

Back to Top

© 2021 ML4H Organization Committee