ML4H 2021
  • Home
  • Accepted Papers
  • Attend
    • Registration
    • Participation Guide
    • Schedule
    • Speakers
    • Research Roundtables
    • Career Mentorship
    • Raffle
    • Code of Conduct
  • Submit
    • Call for Participation
    • Writing Guidelines
    • Reviewer Instructions
    • Submission Mentorship
    • Reviewer Mentorship
  • Organization
    • About
    • Organizers
  • Past Events
    • 2020
    • 2019
    • 2018
    • 2017
    • 2016

Out-of-Distribution Detection for Medical Applications: Guidelines for Practical Evaluation

Karina Zadorozhny, Patrick Thoral, Paul Elbers, Giovanni Cinà

Abstract: Detection of Out-of-Distribution (OOD) samples in real time is a crucial safety check for deployment of machine learning models in the medical field. Despite a growing number of uncertainty quantification techniques, there is a lack of evaluation guidelines on how to select OOD detection methods in practice. This gap impedes implementation of OOD detection methods for real-world applications. Here, we propose a series of practical considerations and tests to choose the best OOD detector for a specific medical dataset. These guidelines are illustrated on a real-life use case of Electronic Health Records (EHR). Our results can serve as a guide for implementation of OOD detection methods in clinical practice, mitigating risks associated with the use of machine learning models in healthcare.

Poster
Abstract: Detection of Out-of-Distribution (OOD) samples in real time is a crucial safety check for deployment of machine learning models in the medical field. Despite a growing number of uncertainty quantification techniques, there is a lack of evaluation guidelines on how to select OOD detection methods in practice. This gap impedes implementation of OOD detection methods for real-world applications. Here, we propose a series of practical considerations and tests to choose the best OOD detector for a specific medical dataset. These guidelines are illustrated on a real-life use case of Electronic Health Records (EHR). Our results can serve as a guide for implementation of OOD detection methods in clinical practice, mitigating risks associated with the use of machine learning models in healthcare.

Back to Top

© 2021 ML4H Organization Committee