ML4H 2021
  • Home
  • Accepted Papers
  • Attend
    • Registration
    • Participation Guide
    • Schedule
    • Speakers
    • Research Roundtables
    • Career Mentorship
    • Raffle
    • Code of Conduct
  • Submit
    • Call for Participation
    • Writing Guidelines
    • Reviewer Instructions
    • Submission Mentorship
    • Reviewer Mentorship
  • Organization
    • About
    • Organizers
  • Past Events
    • 2020
    • 2019
    • 2018
    • 2017
    • 2016

Brain dynamics via Cumulative Auto-Regressive Self-Attention

Usman Mahmood, Zening Fu, Vince Calhoun, Sergey Plis

Abstract: Multivariate dynamical processes can often be intuitively described by a weighted connectivity graph between components representing each individual time-series. Even a simple representation of this graph as a Pearson correlation matrix may be informative and predictive as demonstrated in the brain imaging literature. However, there is a consensus expectation that powerful graph neural networks (GNNs) should perform better in similar settings. In this work we present a model that is considerably shallow than deep GNNs, yet outperforms them in predictive accuracy in a brain imaging application. Our model learns the autoregressive structure of individual time series and estimates directed connectivity graphs between the learned representations via a self-attention mechanism in an end-to-end fashion. The supervised training of the model as a classifier between patients and controls results in a model that generates directed connectivity graphs and highlights the components of the time-series that are predictive for each subject. We demonstrate our results on a functional neuroimaging dataset classifying schizophrenia patients and controls.

Poster
Abstract: Multivariate dynamical processes can often be intuitively described by a weighted connectivity graph between components representing each individual time-series. Even a simple representation of this graph as a Pearson correlation matrix may be informative and predictive as demonstrated in the brain imaging literature. However, there is a consensus expectation that powerful graph neural networks (GNNs) should perform better in similar settings. In this work we present a model that is considerably shallow than deep GNNs, yet outperforms them in predictive accuracy in a brain imaging application. Our model learns the autoregressive structure of individual time series and estimates directed connectivity graphs between the learned representations via a self-attention mechanism in an end-to-end fashion. The supervised training of the model as a classifier between patients and controls results in a model that generates directed connectivity graphs and highlights the components of the time-series that are predictive for each subject. We demonstrate our results on a functional neuroimaging dataset classifying schizophrenia patients and controls.

Back to Top

© 2021 ML4H Organization Committee