Papers

We have accepted 18 papers to be included in the Volume 158 of the Proceedings of Machine Learning Research.

  • Rui Li*, Stephanie Hu*, Mingyu Lu, Yuria Utsumi, Prithwish Chakraborty, Daby M. Sow, Piyush Madan, Mohamed Ghalwash, Zach Shahn, Li-wei H. Lehman: G-Net: a Recurrent Network Approach to G-Computation for Counterfactual Prediction Under a Dynamic Treatment Regime
  • Jonathan Rubin, Ramon Erkamp, Ragha Srinivasa Naidu, Anumod Odungatta Thodiyil, Alvin Chen: Attention Distillation for Detection Transformers: Application to Real-Time Video Object Detection in Ultrasound
  • Esther Dietrich, Patrick Fuhlert, Anne Ernst, Guido Sauter, Maximilian Lennartz, H. Siegfried Stiehl, Marina Zimmermann*, Stefan Bonn*: Towards Explainable End-to-End Prostate Cancer Relapse Prediction from H&E Images Combining Self-Attention Multiple Instance Learning with a Recurrent Neural Network
  • Ajay Jaiswal, Liyan Tang, Meheli Ghosh, Justin F Rousseau, Yifan Peng, Ying Ding: RadBERT-CL: Factually-Aware Contrastive Learning For Radiology Report Classification
  • Ilya Valmianski, Nave Frost, Navdeep Sood, Yang Wang, Baodong Liu, James J. Zhu, Sunil Karumuri, Ian M. Finn, Daniel S. Zisook: SmartTriage: A system for personalized patient data capture, documentation generation, and decision support
  • Mark Endo*, Rayan Krishnan*, Viswesh Krishna, Andrew Y. Ng, Pranav Rajpurkar: Retrieval-Based Chest X-Ray Report Generation Using a Pre-trained Contrastive Language-Image Model
  • Oliver Carr*, Avelino Javer*, Patrick Rockenschaub*, Owen Parsons, Robert Dürichen: Longitudinal patient stratification of electronic health records with flexible adjustment for clinical outcomes
  • Ho Danliang, Iain BH Tan, Mehul Motani: Prognosticating Colorectal Cancer Recurrence using an Interpretable Deep Multi-view Network
  • Rhys Compton, Ilya Valmianski, Li Deng, Costa Huang, Namit Katariya, Xavier Amatriain, Anitha Kannan: MEDCOD: A Medically-Accurate, Emotive, Diverse, and Controllable Dialog System
  • Peiqi Wang, Ruizhi Liao, Daniel Moyer, Seth Berkowitz, Steven Horng, Polina Golland: Image Classification with Consistent Supporting Evidence
  • Tianwei Yin*, Zihui Wu*, He Sun, Adrian V. Dalca, Yisong Yue, Katherine L. Bouman: End-to-End Sequential Sampling and Reconstruction for MRI
  • Alexander Campbell*, Lorena Qendro*, Pietro Lio, Cecilia Mascolo: Early Exit Ensembles for Uncertainty Quantification
  • Seongsu Bae, Daeyoung Kim, Jiho Kim, Edward Choi: Question Answering for Complex Electronic Health Records Database using Unified Encoder-Decoder Architecture
  • Chao Pang, Xinzhuo Jiang, Krishna S. Kalluri, Matthew Spotnitz, RuiJun Chen, Adler Perotte, Karthik Natarajan: CEHR-BERT: Incorporating temporal information from structured EHR data to improve prediction tasks
  • Tuan Truong, Sadegh Mohammadi, Matthias Lenga: How Transferable are Self-supervised Features in Medical Image Classification Tasks?
  • Neeraj Wagh, Jionghao Wei, Samarth Rawal, Leland Barnard, Benjamin Brinkmann, Brent Berry, Gregory Worrell, David Jones, Yogatheesan Varatharajah: Domain-guided Self-supervision of EEG Data Improves Downstream Classification Performance and Generalizability
  • Milan Kuzmanovic, Tobias Hatt, Stefan Feuerriegel: Deconfounding Temporal Autoencoder: Estimating Treatment Effects over Time Using Noisy Proxies
  • Bryan Gopal*, Ryan Han*, Gautham Raghupathi*, Andrew Ng, Geoff Tison**, Pranav Rajpurkar**: 3KG: Contrastive Learning of 12-Lead Electrocardiograms using Physiologically-Inspired Augmentations


  • Extended Abstracts

    We have accepted 30 extended abstracts for presentation at the workshop, which are hosted on the ML4H 2021 arXiv index.

  • Melle B. Vessies*, Sharvaree P. Vadgama*, Rutger R. van de Leur, Pieter A. Doevendans, Rutger J. Hassink, Erik Bekkers, René van Es: Interpretable ECG classification via a query-based latent space traversal (qLST)
  • Lin Lawrence Guo, Stephen R Pfohl, Jason Fries, Alistair Johnson, Jose Posada, Catherine Aftandilian, Nigam Shah, Lillian Sung: Evaluation of Domain Generalization and Adaptation on Improving Model Robustness to Temporal Dataset Shift in Clinical Medicine
  • Candelaria Mosquera, Luciana Ferrer, Diego H. Milone, Daniel Luna, Enzo Ferrante: Understanding the impact of class imbalance on the performance of chest x-ray image classifiers
  • Adedolapo Aishat Toye, Suryaprakash Kompalli: Comparative Study of Speech Analysis Methods to Predict Parkinson's Disease
  • Kyunghoon Hur*, Jiyoung Lee*, Jungwoo Oh, Wesley Price, Young-Hak Kim, Edward Choi: Unifying Heterogenous Electronic Health Records Systems via Text-Based Code Embedding
  • Sharmita Dey, Sabri Boughorbel, Arndt F. Schilling: Learning a Shared Model for Motorized Prosthetic Joints to Predict Ankle-Joint Motion
  • Neil Band*, Tim G. J. Rudner*, Qixuan Feng, Angelos Filos, Zachary Nado, Michael W. Dusenberry, Ghassen Jerfel, Dustin Tran, Yarin Gal: Benchmarking Bayesian Deep Learning on Diabetic Retinopathy Detection Tasks
  • Kevalee Shah, Dimitris Spathis, Chi I. Tang, Cecilia Mascolo: Evaluating Contrastive Learning on Wearable Timeseries for Downstream Clinical Outcomes
  • Newton Mwai Kinyanjui*, Fredrik D. Johansson*: ADCB: An Alzheimer's disease benchmark for evaluating observational estimators of causal effects
  • Niall Taylor, Lei Sha, Dan W Joyce, Alejo Nevado-Holgado, Thomas Lukasiewicz, Andrey Kormilitzin: Rationale production to support clinical decision-making
  • Subhrajit Roy*, Diana Mincu*, Negar Rostamzadeh, Chintan Ghate, Nenad Tomasev, Jessica Schrouff, Natalie Harris, Christina Chen, Fletcher Lee Hartsell, Katherine Heller.: Disability prediction in multiple sclerosis using performance outcome measures and demographic data
  • Merel Kuijs, Catherine R. Jutzeler, Bastian Rieck, Sarah C. Brueningk: Interpretability Aware Model Training to Improve Robustness against OOD Magnetic Resonance Images in Alzheimer's Disease Classification
  • Quentin Blampey, Mehdi Rahim: HAD-Net: Hybrid Attention-based Diffusion Network for Glucose Level Forecast
  • Eric Wu*, Kevin Wu*, James Zou: Explaining medical AI performance disparities across sites with confounder Shapley value analysis
  • Varun Nair*, Namit Katariya, Xavier Amatriain, Ilya Valmianski, Anitha Kannan: Adding more data does not always help: A study in medical conversation summarization with PEGASUS
  • Hassan Baker, Austin J. Brockmeier: Exploring latent networks in resting-state fMRI using voxel-to-voxel causal modeling feature selection
  • Usman Mahmood, Zening Fu, Vince Calhoun, Sergey Plis: Multi network InfoMax: A pre-training method involving graph convolutional networks
  • Mathieu Godbout, Alexandre Lachance, Fares Antaki, Ali Dirani, Audrey Durand: Predicting Visual Improvement after Macular Hole Surgery: a Cautionary Tale on Deep Learning with Very Limited Data
  • Usman Mahmood, Zening Fu, Vince Calhoun, Sergey Plis: Brain dynamics via Cumulative Auto-Regressive Self-Attention
  • Jingshu Liu*, Patricia J. Allen*, Luke Benz, Daniel Blickstein, Evon Okidi, Xiao Shi: A Machine Learning Approach for Recruitment Prediction in Clinical Trial Design
  • Haoran Zhang, Natalie Dullerud, Karsten Roth, Stephen Pfohl, Marzyeh Ghassemi: Improving the Fairness of Deep Chest X-ray Classifiers
  • Roxana Daneshjou*, Kailas Vodrahalli*, Weixin Liang*, Roberto A Novoa, Melissa Jenkins, Veronica Rotemberg, Justin Ko, Susan M Swetter, Elizabeth E Bailey, Olivier Gevaert, Pritam Mukherjee, Michelle Phung, Kiana Yekrang, Bradley Fong, Rachna Sahasrabudhe, Albert Chiou, James Zou: Disparities in Dermatology AI: Assessments Using Diverse Clinical Images
  • Amirata Ghorbani, Andre Esteva, James Zou: Grading of Prostate Whole-slide Images Using Weak Self-supervised Learning
  • Kristina M. Holton*, Shi Yu Chan*, Austin J. Brockmeier, Dost Öngür, Mei-Hua Hallk: Exploring the influences of functional connectivity architecture on cortical thickness networks in patients with early psychosis
  • Odhran O'Donoghue, Paul Duckworth, Giuseppe Ughi, Linus Scheibenreif, Kia Khezeli, Adrienne Hoarfrost, Samuel Budd, Patrick Foley, Nicholas Chia, John Kalantari, Graham Mackintosh, Frank Soboczenski, Lauren Sanders: Invariant Risk Minimisation for Cross-Organism Inference: Substituting Mouse Data for Human Data in Human Risk Factor Discovery
  • Tanish Tyagi*, Colin G. Magdamo*, Ayush Noori, Zhaozhi Li, Xiao Liu, Mayuresh Deodhar, Zhuoqiao Hong, Wendong Ge, Elissa M. Ye, Yi-han Sheu, Haitham Alabsi,Laura Brenner, Gregory K. Robbins, Sahar Zafar, Nicole Benson, Lidia Moura, John Hsu, Alberto Serrano-Pozo, Dimitry Prokopenko, Rudolph E. Tanzi, Bradley T.Hyman, Deborah Blacker, Shibani S. Mukerji, M. Brandon Westover, Sudeshna Das: Using Deep Learning to Identify Patients with Cognitive Impairment in Electronic Health Records
  • Karina Zadorozhny, Patrick Thoral, Paul Elbers, Giovanni Cinà: Out-of-Distribution Detection for Medical Applications: Guidelines for Practical Evaluation
  • Andreanne Lemay, Katharina Hoebel, Christopher P. Bridge, Didem Egemen, Ana Cecilia Rodriguez, Mark Schiffman, John Peter Campbell, Jayashree Kalpathy-Cramer: Monte Carlo dropout increases model repeatability
  • Negar Rostamzadeh, Subhrajit Roy, Diana Mincu, Andrew Smart, Lauren Wilcox, Mahima Pushkarna, Razvan Amironesei, Jessica Schrouff, Madeleine Elish, Nyalleng Moorosi, Berk Ustun, Noah Broesti, Katherine Heller: Specialized Healthsheet for Healthcare Datasets
  • D. Suo, N. Agarwal, W. Xia, X. Chen, U. Ghai, A. Yu, P. Gradu, K. Singh, C. Zhang, E. Minasyan, J. LaChance, T. Zajdel, M. Schottdorf, D. Cohen, E. Hazan: Machine Learning for Mechanical Ventilation Control